ГЛАВА XIV
ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

В главе XIV рассмотрены простейшие методы решения интегральных уравнений. Корректно поставленным задачам посвящен § 1. В нем изложены некоторые типичные постановки задач и даны методы их решения: разностный метод и некоторые приближенные методы.

В § 2 рассмотрены некорректно поставленные задачи для линейных интегральных уравнений первого рода. Изложена теория построения регуляризирующих алгоритмов по А. Н. Тихонову. Для некоторых некорректных задач, возникших в предыдущих главах, даны алгоритмы решения, доведенные до схем численного расчета.

§ 1. Корректно поставленные задачи

1. Постановки задач. Интегральным называют уравнение, в котором неизвестная функция \(u(x) \) стоит под знаком интеграла. Одномерное нелинейное интегральное уравнение имеет вид

\[
\int_{a}^{b} K(x, \xi, u(\xi)) \, d\xi = F(x, u(x)), \quad a \leq x \leq b,
\]

где ядро \(K(x, \xi, u) \) и правая часть \(F(x, u) \) — заданные функции.

К интегральным уравнениям приводят многие физические задачи. Так, задача восстановления переданного радиосигнала \(u(t) \) по принятому сигналу \(f(t) \) сводится к решению интегрального уравнения типа свертки:

\[
\int_{0}^{t} K(t - \tau) \, u(\tau) \, d\tau = f(t),
\]

где ядро \(K(\xi) \) зависит от свойств приемной аппаратуры и среды, через которую проходит сигнал.

Заметим, что даже для задач, записанных в терминах уравнений в частных производных, первичной обычно является формулировка в виде интегральных законов сохранения, т. е. интегральных уравнений. В предыдущих главах такие формулировки использовались, например, для построения консервативных разностных схем.
Интегральные уравнения в некоторых отношениях удобнее дифференциальных. Во-первых, интегральное уравнение содержит в себе полную постановку задачи. Например, интегральное уравнение

\[u(x) = u_0 + \int_{x_0}^{x} f(\xi, u(\xi)) d\xi \]
(3)

эквивалентно задаче Коши для дифференциального уравнения

\[\frac{du(x)}{dx} = f(x, u), \quad u(x_0) = u_0. \]
(4)

Тем самым, для уравнения (3) не требуется задавать никаких дополнительных условий, начальных или граничных (см. также задачу 1).

Во-вторых, в интегральных уравнениях переход от одной переменной ко многим является естественным. Так, многомерным аналогом (1) является уравнение

\[\int_{G} K(x, \xi, u(\xi)) d\xi = F(x, u(x)), \]
(5)

\[x = \{x_1, x_2, \ldots, x_p\} \subseteq G(x), \]

отличающееся от (1) только тем, что интегрирование проводится по многомерной области G. Поскольку оба уравнения не требуют дополнительных условий и полностью определяют задачу, аналогия является полной. Тем самым, теоретическое обоснование постановок и методов решения одномерных задач непосредственно обобщается на случай многих измерений.

Наоборот, в дифференциальных уравнениях переход от одной переменной к нескольким, т. е. от обыкновенных дифференциальных уравнений к уравнениям в частных производных, является принципиальным усложнением, приводит к новым постановкам задач и требует новых методов для их обоснования.

Далее мы ограничимся рассмотрением одномерного уравнения (1) и некоторых его частных случаев.

Линейные задачи. Лучше всего изучены уравнения, в которые неизвестная функция \(u(x) \) входит линейно (см. [23]). Их можно записать в виде

\[u(x) - \lambda \int_{a}^{b} K(x, \xi) u(\xi) d\xi = f(x), \quad a \leq x \leq b. \]
(6)

Это уравнение называют уравнением Фредгольма второго рода: ядро \(K(x, \xi) \) этого уравнения определено на квадрате \(a \leq x \leq b, a \leq \xi \leq b. \)

Если ядро \(K(x, \xi) \) отлично от нуля только на треугольнике \(a \leq \xi \leq x \leq b \) (т. е. \(K(x, \xi) = 0 \) при \(x < \xi \)), то уравнение (6)
переходит в уравнение Вольтерра второго рода:

\[u(x) - \lambda \int_a^x K(x, \xi) u(\xi) \, d\xi = f(x), \quad a \leq x \leq b. \tag{7} \]

Это уравнение теоретически исследовать или численно решить много проще, чем уравнение Фредгольма.

Если в уравнениях (6) и (7) отбросить член \(u(x) \), оставив только \(u(\xi) \) под знаком интеграла, то получим уравнения Фредгольма и Вольтерра первого рода. Задачи для уравнений первого рода являются некорректно поставленными и будут рассмотрены в § 2. Для уравнений второго рода задачи корректно поставлены; останавливаясь на этих задачах.

Для однородного уравнения Фредгольма второго рода (6) ставится задача на собственные значения:

\[u(x) = \lambda \int_a^b K(x, \xi) u(\xi) \, d\xi, \quad a \leq x \leq b. \tag{8} \]

Требуется найти такие значения параметра \(\lambda = \lambda_i \), при которых уравнение (8) имеет нетривиальные решения \(u = \varphi_i(x) \); \(\lambda_i \) называют собственными значениями ядра \(K(x, \xi) \), а \(\varphi_i(x) \) — собственными функциями.

Если ядро вещественное и симметричное, \(K(x, \xi) = K(\xi, x) = K^*(x, \xi) \), то оно имеет по меньшей мере одно собственное значение. Все собственные значения такого ядра вещественны, а его собственные функции ортогональны друг другу. Заметим, однако, что система собственных функций \(\varphi_i(x) \) может быть неполной и даже конечной.

Неоднородное уравнение Фредгольма (6) при значениях параметра \(\lambda \), не равном ни одному из собственных значений \(\lambda_i \) ядра, имеет решение \(u(x) \), притом единственное.

Если ядро \(K(x, \xi) \) и правая часть \(f(x) \) непрерывны вместе со своими \(p \)-мии производными, то решение также \(p \) раз непрерывно дифференцируемо. В этом легко убедиться, продифференцировав (6) \(p \) раз:

\[u^{(p)}(x) = f^{(p)}(x) + \lambda \int_a^b \frac{\partial^p K(x, \xi)}{\partial x^p} u(\xi) \, d\xi. \]

При сделанных предположениях правая часть этого равенства непрерывно зависит от \(x \), что доказывает наше утверждение.

Для симметричного ядра решение неоднородного уравнения (6) представляется в виде разложения Шмидта:

\[u(x) = f(x) + \sum_{i \geq 1} \frac{\lambda}{\lambda_i - \lambda} \varphi_i(x) \int_a^b f(\xi) \varphi_i(\xi) \, d\xi; \tag{9} \]
если ядро \(K(x, \xi) \) и правая часть \(f(x) \) интегрируемы с квадратом, то этот ряд сходится абсолютно и равномерно. В данном случае из формулы (9) непосредственно видно, что при \(\lambda \neq \lambda_i \) решение \(u(x) \) существует, единствено и непрерывно зависит от \(f(x) \), что означает корректность задачи (6).

Пусть параметр \(\lambda \) равен одному из собственных значений \(\lambda_i \) ядра \(K(x, \xi) \). Тогда неоднородное уравнение Фредгольма (6) при произвольной правой части \(f(x) \), вообще говоря, не имеет решения. Однако при некоторых правых частях \(f(x) \) оно может иметь решение, притом не единственное (соответствующие примеры будут рассмотрены в п. 4). Таким образом, при \(\lambda = \lambda_i \) в классе непрерывных или даже достаточно гладких правых частей \(f(x) \) задача (6) является некорректно поставленной.

Уравнение Вольтерра не имеет собственных значений: если в уравнении (7) положить \(f(x) = 0 \), то оно будет иметь только тривиальное решение \(u(x) = 0 \). Поэтому неоднородное уравнение (7) всегда имеет решение, притом единственное.

2. Разностный метод. Это простейший численный метод, позволяющий получать решение одномерных задач с хорошей точностью, а двумерных — с удовлетворительной. Он рассчитан на применение ЭВМ, хотя оценки с небольшим числом узлов сетки можно производить вручную.

Рассмотрим одномерное нелинейное уравнение (1). Возьмем на \([a, b]\) какую-нибудь квадратную формулу, например линейную формулу с узлами \(x_n \) и весами \(c_n \):

\[
\int_a^b \Phi(\xi) \, d\xi \approx \sum_{n=1}^N c_n \Phi(x_n)
\]
(10)

(нелинейные квадратурные формулы почти никогда не используются). Введем в квадрат \([a \leq x \leq b, \ a \leq \xi \leq b]\) сетку \(x_n, \xi_m\), где \(x_n\) и \(\xi_m\) являются узлами формулы (10). Заменим интеграл в уравнении (1) суммой (10), получим систему алгебраических уравнений для определения приближенных значений в узлах \(y_n \approx u(x_n)\):

\[
\sum_{m=1}^N c_m K(x_n, x_m, y_m) = F(x_n, y_n), \quad 1 \leq n \leq N.
\]
(11)

Эту систему целесообразно решать методом Ньютона. На вопрос о сходимости \(y_n\) к \(u(x_n)\) при заданном типе квадратурной формулы и \(N \to \infty\) в настолько общей постановке трудно ответить.

Рассмотрим линейные задачи. Для них обоснование сходимости (при использовании линейных квадратурных формул) фактически содержится в теории Фредгольма. Это обоснование громоздко и здесь не приводится (см., например, [23]).
Однородное уравнение Фредгольма (8) линейно, поэтому для него система (11) также линейна. Запишем ее в следующем виде:

\[
\sum_{m=1}^{N} c_m K_{nm} y_m = \frac{1}{\lambda} y_n, \quad 1 \leqslant n \leqslant N, \quad K_{nm} = K(x_n, x_m).
\]

(12)

Система (12) представляет собой задачу на определение собственных значений матрицы \(K' \) порядка \(N \) с элементами \(K'_{nm} = K_{nm} c_m \). Эта матрица имеет \(N \) собственных значений \(\lambda_{i(N)} \), \(1 \leqslant i \leqslant N \), которые являются приближениям к первым собственным значениям \(\lambda_i \) ядра \(K(x, \xi) \).

Разностное решение (12) вычисляют методами, описанными в главе VI. Матрица \(K' \) является, вообще говоря, плотно заполненной и неэрмитовой; поэтому фактически вычислить разностное решение удается только при небольших \(N \leqslant 50 \). Получить в этом случае хорошую точность можно лишь для нескольких первых собственных значений, причем ядро и правая часть должны быть достаточно гладкими и не быстропеременными.

Замечание 1. Пусть ядро, правая часть и искомое решение достаточно гладки и квадратурная формула (10) имеет на них аппроксимацию \(O(h^p) \). Поскольку алгоритм сходится, то он устойчив. Задача (8) — линейная, поэтому из аппроксимации и устойчивости следует сходимость со скоростью \(O(h^p) \).

Сходимость можно исследовать численно, проводя расчеты на последовательности сгущающихся сеток и устанавливая стремление \(y_n \) и некоторой предельной функции при \(h \to 0 \).

Неоднородное уравнение Фредгольма (6) приводит к линейной неоднородной алгебраической системе

\[
y_n - \lambda \sum_{m=1}^{N} c_m K_{nm} y_m = f_n, \quad 1 \leqslant n \leqslant N, \quad f_n = f(x_n).
\]

(13)

Разностное решение легко вычисляется методом исключения Гаусса; на ЭВМ типа БЭСМ-6 скорость и оперативная память позволяют использовать в расчете до \(N \approx 150 \) узлов. Таким образом, в этой задаче нетрудно получить более высокую точность расчета, чем в задаче на собственные значения.

Линейная система (13) имеет единственное решение, если \(\lambda \neq \lambda_{i(N)} \). Но \(\lambda_{i(N)} \approx \lambda_i \), причем при большом \(N \) разница между ними невелика. Следовательно, описанный алгоритм хорошо обусловлен, если параметр \(\lambda \) не лежит в малой окрестности одного из собственных значений \(\lambda_i \) ядра.

Если \(\lambda \approx \lambda_i \), то система (13) становится плохо обусловленной. При некоторых числах узлов \(N \) возможен сбой алгоритма: если слу-
чайно значение $\lambda_i^{(N)}$ близко подходит к λ, то разностное решение y_n на этой сетке может сильно отличаться от $u(x)$.

Обычно нам неизвестны собственные значения ядра. Поэтому для обнаружения и исключения последнего случая все расчеты надо проводить на последовательности сгущающихся сеток. Если при сгущении сети y_n сходится к некоторой предельной функции $u(x)$, то эта функция есть искомое решение (см. замечание 1). Если расчет на одной из сеток выпадает из общей закономерности, то имело место случайное совпадение $\lambda \approx \lambda_i^{(N)}$. Если на всех сетках y_n не стремится к пределу при $h \to 0$, то $\lambda \approx \lambda_i$.

Уравнение Вольтерра (7) получают из уравнения Фредгольма (6), полагая $K(x, \xi) = 0$ при $x < \xi$. Алгебраическая система (13) становится при этом треугольной:

$$y_n - \lambda \sum_{m=1}^{n} c_m K_{nm} y_m = f_n, \quad 1 \leq n \leq N,$$

(14)

и решается обратным ходом метода Гаусса всего за $\frac{3}{2}N^2$ действий. Поэтому здесь объем вычислений остается умеренным даже при $N \approx 1000$, что позволяет проводить расчеты с очень высокой точностью.

Выбор квадратурной формулы. Большинство задач приходится решать, используя сравнительно небольшое число узлов N. Поэтому для получения хорошей точности целесообразно выбирать квадратурные формулы высокого порядка точности, разумеется, если $K(x, \xi)$ и $f(x)$ имеют достаточное число непрерывных производных.

Обычно наилучшие результаты для достаточно гладких решений дают квадратурные формулы Гаусса или Гаусса — Кристиоф-феля; при числе узлов k их порядок точности $p = 2k$. Можно также использовать простейшую формулу трапеций, последовательно сгущая сетки вдвоем от $N_1 = 2$ до $N_k = 2^k$ и уточняя решение способом Рунге; это также дает результат с порядком точности $p = 2k$ *), но требует использования существенно большего числа узлов, чем в формулах Гаусса.

Нередко ядро $K(x, \xi)$ или правая часть $f(x)$ недостаточно гладки и даже имеют разрывы. Наиболее типичен разрыв ядра или его производных при $x = \xi$ (на диагонали квадрата $a \leq x \leq b$, $a \leq \xi \leq b$); встречаются особенности и на других линиях в плоскости (x, ξ). В этих случаях использовать формулы Гаусса нецелесообразно. Удобнее построить специальную сетку x_n так, чтобы особые линии пересекали линии сетки $x = x_n$ только в узлах

*) Каждая лишняя сетка позволяет повысить порядок точности на 2, поскольку погрешность формулы трапеций разлагается по четным степеням шага h.

457
\(\xi = x_m \) (рис. 102). Затем в качестве (10) выбирают обобщенную формулу трапеций (4.7), причем в интервалах, примыкающих к особой линии, используют соответствующие односторонние пределы функций.

Если вне особых линий все функции непрерывны вместе с достаточным числом своих производных, то при сгущении специальной сетки можно уточнять решение способом Рунге.

Полезно предварительно так преобразовать исходное уравнение, чтобы гладкость решения повысилась. Например, если ядро непрерывно, а \(f(x) \) разрывна, то \(u(x) \) тоже разрывна. Полагая \(z(x) = u(x) - f(x) \), получим вместо (6) уравнение

\[
\begin{align*}
z(x) - \lambda \int_a^b K(x, \xi) z(\xi) \, d\xi &= \varphi(x), \\
\varphi(x) &= \lambda \int_a^b K(x, \xi) f(\xi) \, d\xi.
\end{align*}
\]

(15)

В уравнении (15) правая часть уже непрерывно зависит от \(x \), так что его решение \(z(x) \) непрерывно. Поэтому численно решать уравнение (15) проще, чем исходное уравнение (6).

Замечание 2. Уравнение Вольterra (7) формально сводится к уравнению Фредгольма (6), но ядро при этом имеет особенность (обычно разрыв) на диагонали \(x = \xi \). Поэтому для уравнения Вольterra следует выбирать обобщенную формулу трапеций и проводить уточнение способом Рунге.

Многомерные задачи допускают, в принципе, применение описанного метода; надо только в (10) и других формулех под \(x_n \) подразумевать узлы многомерной кубатурной формулы \(x_n \). Однако получить удовлетворительную точность при умеренном объеме расчетов удается лишь для достаточно гладких \(K(x, \xi) \) и \(f(x) \), когда можно использовать кубатурные формулы высокого порядка точности (например, произведение одномерных формул Гаусса с небольшим числом узлов \(k \) по каждой переменной).

В более сложных случаях развивают специальные методы; многие из них используют симметрию задачи и слабую зависимость решения от части переменных.

3. Метод последовательных приближений. Это простейший приближенный метод. Запишем для неоднородного уравнения Фредгольма (6) итерационный процесс:

\[
u_0(x) = 0, \quad u_{n+1}(x) = f(x) + \lambda \int_a^b K(x, \xi) u_n(\xi) \, d\xi. \]

(16)
Нетрудно показать, что при ограничении ядре и достаточно малом значении $|\lambda|$ этот процесс сходится к решению уравнения (6).

Доказательство. Обозначим погрешность n-й итерации через $z_n(x) = u_n(x) - u(x)$. Вычитая (6) из (16), получим

$$z_{n+1}(x) = \lambda \int_a^b K(x, \xi) z_n(\xi) \, d\xi. \quad (17)$$

Отсюда следует неравенство

$$\|z_{n+1}\|_C \leq |\lambda| (b-a) \|K(x, \xi)\|_C \|z_n(x)\|_C. \quad (18)$$

Тем самым, если выполнено условие

$$q = |\lambda| (b-a) \|K(x, \xi)\|_C < 1, \quad (19)$$

то итерации (16) сходятся равномерно по x, причем сходимость линейная. При достаточно малом $|\lambda|$ условие (19) выполняется.

В практических вычислениях квадратуры, возникающие в этом методе, редко удается выразить через элементарные функции. Поэтому обычно ограничиваются нахождением первых приближений.

Замечание 1. Для уравнения Вольтерра (7) метод последовательных приближений сходится равномерно по x при любых значениях λ. Действительно, в этом случае вместо (17) справедливо соотношение

$$z_{n+1}(x) = \lambda \int_a^x K(x, \xi) z_n(\xi) \, d\xi. \quad (20)$$

Выкладки, полностью аналогичные доказательству сходимости метода Пикара (gl. VIII, § 1, п. 3), приводят к оценке

$$\|z_n(x)\|_C \leq \frac{1}{n!} \{ |\lambda| (b-a) \|K(x, \xi)\|_C \}^n \|z_0(x)\|_C. \quad (21)$$

При $n \to \infty$ правая часть этого неравенства стремится к нулю при любых значениях λ, что доказывает наше утверждение.

Замечание 2. Оценку (18) можно переписать в следующем виде:

$$\|z_n(x)\|_C \leq q^n \|z_0(x)\|_C, \quad q^n \sim \lambda^n. \quad (22)$$

Отсюда видно, что метод последовательных приближений для уравнения Фредгольма эквивалентен разложению в ряд по степеням параметра λ. Это можно строго показать, выражая $u_n(x)$ через $u_1(x) = f(x)$ при помощи рекуррентного соотношения (16).
Пример. Рассмотрим уравнение

$$u(x) = -\int_{0}^{\infty} e^{-(x+\xi)} u(\xi) \, d\xi - x. \quad (23)$$

Применяя процесс (16), получим

$$u_0(x) = 0, \quad u_1(x) = x, \quad u_2(x) = x + \lambda e^{-x},$$

$$u_3(x) = x + \lambda e^{-x} + \frac{1}{2} \lambda^2 e^{-x}, \quad u_4(x) = x + \left(\lambda + \frac{1}{2} \lambda^2 + \frac{1}{4} \lambda^3\right) e^{-x}$$

и т. д. В этом случае удаётся найти точное решение

$$u(x) = x + \left(\lambda + \frac{\lambda^2}{2} + \frac{\lambda^3}{4} + \ldots\right) e^{-x} = x + \frac{2\lambda}{2-\lambda} e^{-x}. \quad (24)$$

Нетрудно заметить, что последовательные приближения здесь сходятся только при $|\lambda| < 2$.

4. Замена ядра выраженным. Ядро уравнения Фредгольма называется выраженным, если оно является суммой конечного числа членов вида

$$K(x, \xi) = \sum_{n=1}^{N} A_n(x) B_n(\xi) \quad (25)$$

(для уравнения Вольterra ядро не может быть выраженным, иначе оно тождественно равнялось бы нулю). Решение уравнения с выраженным ядром находится за конечное число действий.

В самом деле, подставляя ядро (25) в неоднородное уравнение (6), представим решение в виде суммы конечного числа членов:

$$u(x) = f(x) + \lambda \sum_{n=1}^{N} \alpha_n A_n(x), \quad (26a)$$

$$\alpha_n = \frac{b}{a} B_n(\xi) \, u(\xi) \, d\xi. \quad (26b)$$

Подставляя (26a) в (26b), получим линейную систему для нахождения коэффициентов α_n:

$$\sum_{m=1}^{N} \left[\delta_{nm} - \lambda \int_{a}^{b} B_n(\xi) A_m(\xi) \, d\xi \right] \alpha_m = \int_{a}^{b} B_n(\xi) f(\xi) \, d\xi, \quad 1 \leq n \leq N. \quad (27)$$

Решая эту систему и подставляя найденные значения α_n в (26a), найдем искомое решение.

Для однородного уравнения Фредгольма (8) надо положить во всех формулах $f(x) = 0$. Тогда система (27) становится однородной и представляет собой задачу на нахождение собственных
значений матрицы N-го порядка. Отсюда видно, что вырожденное ядро (25) имеет ровно N собственных значений λ_i.

Произвольное ядро нередко удается хорошо аппроксимировать вырожденным ядром. Например, разложим $K(x, \xi)$ в ряд Фурье по некоторой полной ортонормированной системе функций $B_n(\xi)$; коэффициенты этого разложения будут функциями от x:

$$
K(x, \xi) = \sum_{n=1}^{\infty} A_n(x) B_n(\xi), \quad A_n(x) = \int_{a}^{b} B_n^*(\xi) K(x, \xi) d\xi. \quad (28)
$$

В качестве (25) можно взять отрезок разложения (28). Тогда формулы (25)―(27) позволяют найти приближенное решение. Оценка точности таких приближений мы не рассматриваем, поскольку они громоздки и неудобны в практических вычислениях.

З а м е ч а н и е. Пусть в неоднородном уравнении (6) с вырожденным ядром (25) правая часть $f(x) \equiv 0$ и такова, что выполняется

$$
\int_{a}^{b} f(\xi) B_n(\xi) d\xi = 0, \quad 1 \leq n \leq N. \quad (29)
$$

Тогда при λ, равном одному из собственных значений ядра λ_i, система (27) имеет нетривиальное решение, причем не единственное. Тем самым, в данном случае существует решение $u(x)$ уравнения (6).

П р и м ер. Рассмотренное в п. 3 уравнение (23) имеет вырожденное ядро $K(x, \xi) = e^{-x} e^{-\xi}$. У него должно быть ровно одно собственное значение; определим его. Полагая в (27) $N = 1$ и $f(x) = 0$, легко получим

$$
\left(1 - \lambda_1 \int_{0}^{\infty} e^{-2\xi} d\xi\right) \alpha_1 = 0,
$$
откуда $\lambda_1 = 2$. Заметим, что точное решение (24) неоднородного уравнения (23) при $\lambda = \lambda_1$ не существует.

5. Метод Галеркина (который для интегральных уравнений обычно называют методом моментов). Будем искать решение в виде разложения по полной системе функций $\psi_k(x)$:

$$
u(x) \approx f(x) + \lambda \sum_{k=1}^{N} \alpha_k \psi_k(x); \quad (30)$$

поскольку от $u(x)$ не надо специально требовать удовлетворения каким-либо краевым условиям, то от системы $\psi_k(x)$ ничего, кроме полноты, требовать не надо.

Подставляя разложение (30) в неоднородное уравнение Фредгольма (6) и требуя ортогональности невязки ко всем функциям
$\psi_k(x)$, $1 \leq k \leq N$, получим линейную алгебраическую систему уравнений для нахождения α_k:

$$\sum_{k=1}^{N} a_{mk}\alpha_k = b_m, \quad 1 \leq m \leq N,$$

$$\lambda = \frac{b}{a} \int_{a}^{b} \psi_m(x) \psi_k(x) \, dx - \lambda \int_{a}^{b} K(x, \xi) \psi_m(x) \psi_k(\xi) \, d\xi, \quad (31)$$

$$b_m = \int_{a}^{b} K(x, \xi) \psi_m(x) f(\xi) \, dx \, d\xi.$$

В случае задачи на собственные значения (8) надо полагать в (30) и (31) $f(x) = 0$. Метод применим и к нелинейному уравнению (1), но тогда он приводит к нелинейной алгебраической системе.

Основной трудностью, препятствующей применению метода моментов, является сложность вычисления двукратных интегралов, входящих в (31). Поэтому обычно ограничиваются малым числом членов суммы (30).

Замечание. Если система $\psi_k(x)$ ортогональна, то метод моментов эквивалентен приближенной замене ядра на специальное вырожденное ядро:

$$K(x, \xi) = \sum_{k=1}^{N} \psi_k(x) \Psi_k(\xi), \quad (32)$$

$$\Psi_k(\xi) = \int_{a}^{b} K(x, \xi) \psi_k(x) \, dx.$$

§ 2. Некорректные задачи

1. Регуляризация. Если в интегральном уравнении (1) правая часть $F(x, u(x))$ не зависит от решения, т. е. $u(x)$ входит только под знак интеграла, то задача оказывается некорректно поставленной. Классическими примерами некорректных задач являются уравнение Фредгольма первого рода:

$$\int_{a}^{b} K(x, \xi) u(\xi) \, d\xi = f(x), \quad c \leq x \leq d, \quad (33)$$

и уравнение Вольterra первого рода:

$$\int_{a}^{x} K(x, \xi) u(\xi) \, d\xi = f(x), \quad c \leq x \leq d. \quad (34)$$

В отличие от уравнений второго рода, ядро уравнения Фредгольма (33) задано на прямоугольнике $[c \leq x \leq d, a \leq \xi \leq b]$, а в урав-
нении Вольтерра (34) — на трапеции \([c \leq x \leq d, a \leq \xi \leq x]\) *, причем функции \(u(\xi)\) и \(\tilde{f}(x)\) определены на разных отрезках и при- надлежат разным классам функций \(U\) и \(F\).

Покажем, что задача (33) неустойчива по правой части и, тем самым, некорректна. Для этого рассмотрим высокочастотное возмущение с конечной амплитудой \(\delta u(\xi) = \exp(i\omega\xi), \ \omega \gg 1\). Ему соответствует возмущение правой части

\[
\delta f(x) = \int_a^b K(x, \xi) \delta u(\xi) \, d\xi = \int_a^b K(x, \xi) e^{i\omega\xi} \, d\xi.
\]

Интегрируя по частям, получим

\[
\delta f(x) = \frac{1}{i\omega} e^{i\omega \xi} K(x, \xi) \bigg|_{\xi=b}^{\xi=a} - \frac{1}{i\omega} \int_a^b \frac{\partial K(x, \xi)}{\partial \xi} e^{i\omega \xi} \, d\xi = O\left(\frac{1}{\omega}\right). \quad (35)
\]

Это означает, что для достаточно больших частот величина \(\|\delta f\|_C = O(1/\omega)\) оказывается сколь угодно малой. Следовательно, существуют такие сколь угодно малые возмущения правой части \(\delta f(x)\), которым соответствуют большие возмущения решения \(\delta u(\xi)\), т. е. задача (33) неустойчива.

Для уравнения Вольтерра (34) справедливы те же рассуждения. Напомним, что в главе III мы уже сталкивались с некорректностью задачи численного дифференцирования функции \(f(x)\); эта задача сводится к решению уравнения

\[
\int_a^x u(\xi) \, d\xi = f(x), \quad (36)
\]

т. е. является частным случаем уравнения Вольтерра первого рода, с ядром \(K(x, \xi) = 1\) (при \(\xi \leq x\)).

Кроме того, задачи (33), (34) имеют решение не при любых непрерывных правых частях \(f(x)\). Так, задача (36) имеет решение только для дифференцируемых \(\tilde{f}(x)\). Другим примером служит уравнение (33) с вырожденным ядром; подставляя в это уравнение выражение для ядра (25), получим

\[
\sum_{n=1}^N \beta_n A_n(x) = \tilde{f}(x), \quad \beta_n = \int_a^b B_n(\xi) u(\xi) \, d\xi. \quad (37)
\]

Это равенство выполнямо для таких \(\tilde{f}(x)\), которые представляются в виде линейной комбинации функций \(A_n(x)\); для других правых частей задача (33) не имеет решения.

В обоих этих примерах, даже если при некоторой \(f(x) = \tilde{f}(x)\) существует решение, имеются такие малые изменения правой части \(\delta f(x)\), при которых решение не существует.

*) При \(c < a\) эта трапеция превращается в два треугольника.
Очевидно, непосредственно решать некорректные задачи при неточно заданной правой части бессмысленно. Если \(\tilde{f}(x) \) задана с погрешностью \(\delta f(x) \), то соответствующее решение \(\tilde{u}_8(\xi) \) или не существует, или отличается от искового решения \(\bar{u}(\xi) \) на величину \(\delta u(\xi) \), которая может быть большой.

Даже если \(f(x) \) задана точно, но отыскание решения выполняется численными методами, то неизбежно вносятся погрешности метода и округления. Это снова приводит к большой погрешности решения \(\delta u(\xi) \).

Регуляризующий алгоритм. Пусть требуется найти решение \(u(\xi) \) некорректно поставленной задачи:

\[
A[x, \ u(\xi)] = f(x), \quad u(\xi) \in U, \quad f(x) \in F. \quad (38)
\]

Здесь \(A \) — некоторый оператор, не обязательно интегральный, а \(U \) и \(F \) — нормированные пространства. Предполагается, что для произвольной \(f(x) \in F \) решение задачи (38) может не существовать; однако имеются некоторые \(\tilde{f}(x) \in F \), для которых существуют решения \(\bar{u}(\xi) \in U \).

Ранее, изучая разрывные решения квазилинейных уравнений, мы вводили в исследуемое уравнение дополнительные члены, изменяющие свойства решений в нужную нам сторону. Попробуем и здесь изменить уравнение (38), введя в него дополнительные члены с малым положительным параметром регуляризации \(\alpha \). Символически запишем измененную задачу:

\[
A_\alpha[x, \ u_\alpha(\xi)] = f(x), \quad (39)
\]

а ее решение обозначим через \(u_\alpha(\xi) \).

Определение. Оператор \(A_\alpha \) называют регуляризирующим, если а) задача (39) является корректно поставленной в классе правых частей \(F \) при любом (не слишком большом) \(\alpha > 0 \) и б) существует такие функции \(\alpha(\delta) \) и \(\delta(\varepsilon) \), что если \(\| f - \tilde{f} \|_F \leqslant \delta(\varepsilon) \), то \(\| u_\alpha(\delta) - \bar{u} \|_U \leqslant \varepsilon \).

Замечание. Функции \(\alpha(\delta) \) и \(\delta(\varepsilon) \) зависят также от \(\tilde{f}(x) \).

Таким образом, если найден регуляризирующий оператор \(A_\alpha \), то задача (39) имеет решение при любых \(f(x) \in F \), в том числе отличающихся от \(f(x) \) на любого вида погрешность \(\delta f(x) \); эта задача устойчива, так что ее можно решать обычными численными методами. При правильно подобранном параметре \(\alpha \) ее решение \(u_\alpha(\xi) \) достаточно мало отличается от нужного нам решения \(\bar{u}(\xi) \) исходной задачи (38).

Для одной и той же задачи можно построить много различных регуляризирующих алгоритмов. Кроме того, при заданном пространстве \(F \) разные алгоритмы могут давать решения \(u_\alpha(\xi) \), принадлежащим различным пространствам \(U \). Различают регуля-
ризацию слабую (\(U\) есть гильбертово пространство), сильную (чебышевское пространство) и \(p\)-го порядка гладкости (пространство \(C^{(p)}(\xi)\)).

Можно формально превратить задачу (38) в корректно поставленную, если ограничиться рассмотрением правых частей \(f(x)\), принадлежащих некоторому более узкому классу \(F_0\). Например, для задачи численного дифференцирования (36) в качестве \(F_0\) возьмем пространство \(C^{(1)}\). Малость \(\|\delta f\|_{C^{(1)}}\) означает, что максимум \(|\delta f'(\xi)|\) невелик; поэтому такой вариации правой части соответствует малая вариация \(\|\delta u(\xi)\|_C\).

Однако такой подход не конструктивен. Зачастую \(f(x)\) содержит заметную погрешность, например, она может быть экспериментально определяемой величиной. Поэтому постановки большинства прикладных задач таковы, что в качестве \(F\) приходится выбирать чебышевское или даже гильбертово пространство, причем решение \(u(\xi)\) необходимо получать в чебышевском пространстве.

2. Вариационный метод регуляризации. Рассмотрим уравнение Фредгольма первого рода (33). Будем считать, что его ядро непрерывно и таково, что в случае \(f(x)\equiv 0\) уравнение имеет только тривиальное решение \(u(\xi)\equiv 0\). Тогда при любоной правой части \(f(x)\equiv F\) решение либо единственное, либо не существует; тем самым, интегральный оператор

\[
A[x, u(\xi)] = \int_{a}^{b} K(x, \xi)u(\xi)\,d\xi
\]

отображает \(U\) в \(F\) взаимно однозначно.

Исходную задачу (33) можно записать в вариационной форме:

\[
\int_{c}^{d} \{A[x, u(\xi)] - f(x)\}^2\,dx = \min,
\]

где оператор \(A\) определен формулой (40). Рассмотрим измененную задачу:

\[
M[\alpha, f(x), u(\xi)] = \int_{c}^{d} \{A[x, u(\xi)] - f(x)\}^2\,dx + \alpha \Omega_n[u(\xi)] = \min,
\]

где так называемый тихоновский стабилизатор \(n\)-го порядка \(\Omega_n\) равен

\[
\Omega_n[u(\xi)] = \int_{a}^{b} \sum_{k=0}^{n} p_k(\xi) \left(\frac{d^k u(\xi)}{d\xi^k} \right)^2,
\]

а весовые функции \(p_k(\xi)\) непрерывны и неотрицательны, причем

\[\]*Это пространство функций \(u(\xi), a \leq \xi \leq b, \) непрерывных и ограниченных вместе со своими \(p\)-ми производными, причем \(\|u\|_{C^{(p)}} = \max \{ |u|, |u'|, \ldots, |u^{(p)}| \} \).
\[p_n(\xi) \geq 0 \] (если нет специальных оснований для их выбора, то обычно полагают \(p_k(\xi) = 1 \)).

Введем в множестве функций \(U \) норму \(\| u \|_U = \Omega_n [u] \); полученное пространство называют пространством Соболева \(W_2^n \). Множество правых частей \(F \) будем считать гильбертовым пространством. Докажем методами функционального анализа, что алгоритм (42) является регуляризующим (другое доказательство см. в п. 3).

Теорема 1. Задача (42) имеет решение \(u_\alpha(\xi) \) при любых \(f(x) \in F \) и \(\alpha > 0 \).

Доказательство. При \(\alpha > 0 \) функционал \(M[\alpha, f, u] \) ограничен снизу. Тем самым, при данных \(\alpha \) и \(f(x) \) он имеет точную нижнюю грань. Выберем некоторую минимизирующую последовательность \(u_i(\xi) \), \(i = 0, 1, 2, \ldots \), так, что

\[
\lim_{i \to \infty} M_i = \bar{M}, \quad M_i = M[\alpha, f, u_i], \quad \bar{M} = \inf_{u \in U} M[\alpha, f, u].
\]

Упорядочим эту последовательность так, чтобы \(M_i \) не возрасти. Тогда

\[
\Omega_n[u_i] \leq \frac{1}{\alpha} M_i \leq \frac{1}{\alpha} M_0 = \text{const.}
\] (43)

Таким образом, последовательность \(u_i(\xi) \) принадлежит множеству \(u(\xi) \), для которых \(\Omega_n[u] \leq \text{const.} \). Такое множество является компактом в \(U \). Поэтому из последовательности \(u_i(\xi) \) можно выделить подпоследовательность \(u_{i(k)}(\xi) \), сходящуюся по норме к некоторой \(u_\alpha(\xi) \in U \). В силу непрерывности функционала \(M[\alpha, f, u] \) на этой функции \(u_\alpha(\xi) \) достигает своей точной нижней грани. Тем самым, \(u_\alpha(\xi) \in U \) есть решение задачи (42), что доказывает теорему.

Теорема 2. Алгоритм (42) является регуляризующим для задачи (41).

Доказательство. Используем следующие обозначения: \(\hat{u}(\xi) \) — решение исходной задачи (41) с правой частью \(f(x) \); \(\hat{u}_\alpha(\xi) \) — решение измененной задачи (42) с приближенной правой частью \(\tilde{f}(x) \); введем также функцию \(f_\alpha(x) = A[x, u_\alpha(\xi)] \).

Поскольку функционал \(M[\alpha, \tilde{f}, u] \) достигает минимума на \(\hat{u}_\alpha \), то \(M[\alpha, \tilde{f}, \hat{u}_\alpha] \leq M[\alpha, \tilde{f}, \hat{u}] \). Отсюда, используя определение функционала (42a), получим

\[
\alpha \Omega_n[\hat{u}_\alpha] \leq M[\alpha, \tilde{f}, \hat{u}_\alpha] \leq M[\alpha, \tilde{f}, \hat{u}] =
\]

\[
= \int C \{ A[x, \hat{u}] - \tilde{f}(x) \}^2 dx + \alpha \Omega_n[\hat{u}] = \int C \{ \tilde{f}(x) - \hat{f}(x) \}^2 dx +
\]

\[+ \alpha \Omega_n[\hat{u}] = \| \tilde{f} - \hat{f} \|^2_s + \alpha \Omega_n[\hat{u}]. \] (44)
Пусть приближенные правые части удовлетворяют условию

$$\| \tilde{f} - \bar{f} \|_{L^2} \leq C \sqrt{\alpha}, \quad C = \text{const.}$$

(45)

Тогда из (44) следует

$$\Omega_n [\tilde{u}_a] \leq C^2 + \Omega_n = \text{const}, \quad \Omega_n = \Omega_n [\bar{u}].$$

(46)

Значит, решения \tilde{u}_a принадлежат компактному множеству U_0 функций из U. Заметим, что \bar{u} также принадлежит U_0.

Множество F_0 функций $f_\alpha (x)$ есть образ множества U_0 при отображении A. Интегральный оператор A непрерывен и таков (по предположению), что обратное отображение единственно. Поэтому обратное отображение F_0 в компактное множество U_0 при помощи нерегуляризованного оператора A^{-1} непрерывно в $\| \cdot \|_U$. Следовательно, по заданному $\varepsilon > 0$ всегда найдется такое $\beta (\varepsilon)$, что если $\| f_a - \bar{f} \| \leq \beta (\varepsilon)$, то $\| \tilde{u}_a - \bar{u} \| \leq \varepsilon$.

Заметим, что

$$\| f_a - \bar{f} \|^2 = \int_c^d (f_a - \bar{f})^2 \, dx = \int_c^d \{ A [x, \tilde{u}_a] - \bar{f} \}^2 \, dx \leq$$

$$\leq M [\alpha, \tilde{f}, \tilde{u}_a] \leq \alpha \left(C^2 + \Omega_n \right).$$

Отсюда с учетом (45) следует

$$\| \tilde{f} - \bar{f} \| \leq \| f_a - \bar{f} \| + \| \tilde{f} - \bar{f} \| \leq \sqrt{\alpha} \left(C + \sqrt{C^2 + \Omega_n} \right).$$

(47)

Выберем α так, чтобы выполнялось

$$\alpha \leq \alpha_0 (\varepsilon), \quad \alpha_0 (\varepsilon) = \frac{\beta (\varepsilon)}{(C + \sqrt{C^2 + \Omega_n})^2}.$$

(48)

Тогда правая часть неравенства (47) будет меньше $\beta (\varepsilon)$, откуда следует $\| \tilde{u}_a - \bar{u} \| \leq \varepsilon$.

Таким образом, по заданному ε нашли такое $\alpha_0 (\varepsilon)$ и такое $\delta (\alpha) = C \sqrt{\alpha}$, что если $\alpha \leq \alpha_0 (\varepsilon)$ и $\| \tilde{f} - \bar{f} \| \leq \delta (\alpha)$, то $\| \tilde{u}_a - \bar{u} \| \leq \varepsilon$, что и требовалось доказать.

Следствие. Задача (42) корректно поставлена.

В самом деле, подставим в теорему 2 всюду вместо A регуляризирующий алгоритм (42). Тогда малость $\| \tilde{u}_a - \bar{u} \|$ означает, что регуляризованное решение \tilde{u}_a непрерывно зависит от \tilde{f}.

Замечание 1. Теоремы 1 и 2 справедливы не только для линейных интегральных операторов (40), но вообще для непрерывного оператора A, при котором решение задачи $A [u] = f$ единственно (если существует). Соответственно от стабилизатора $\Omega [u]$ достаточно требовать, чтобы множество функций u, для которых $\Omega [u] \leq \text{const}$, было компактно в U.

Замечание 2. Сходимость в пространстве W_2^a означает, что n-я производная сходится среднеквадратично, а сама функция
и ее производные вплоть до \((n - 1)\)-й — равномерно. Таким образом, использование стабилизатора (426) обеспечивает слабую регуляризацию при \(n = 0\), сильную при \(n = 1\) и \((n - 1)\)-го порядка гладкости при \(n > 1\).

Выбор \(\alpha\). В ряде прикладных задач известно, что правая часть имеет характерную погрешность \(\|\tilde{f} - \tilde{f}\| \approx \delta\). Если при этом выбрать \(\alpha\) настолько малым, что нарушится критерий (45), то устойчивость расчета станет недостаточной, так что регуляризованное решение \(\tilde{u}_\alpha\) будет заметно «разболтаным». Если \(\alpha\) настолько велико, что не соблюден критерий (48), то регуляризованное решение \(\tilde{u}_\alpha\) чрезмерно сглажено, что также нежелательно; например, если точное решение \(\tilde{u}\) имеет узкие максимумы (типа резонанных пиков в физических задачах), то у \(\tilde{u}_\alpha\) они могут отсутствовать или иметь существенно меньшую высоту.

Вдобавок непосредственно проверить выполнение критериев (45) и (48) не удается, поскольку функция \(\beta(\varepsilon)\) неизвестна (и, вообще говоря, зависит от \(C\) и \(\tilde{f}\)). Поэтому оптимальный выбор параметра регуляризации \(\alpha\) является сложной проблемой.

Обычно на практике проводят расчеты с несколькими значениями параметра, составляющими геометрическую прогрессию (например, \(\alpha = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\)). Из полученных результатов выбирают наилучший либо визуальным контролем, либо по какому-нибудь правдоподобному критерию.

Примером такого критерия является требование, чтобы невязка, полученная при подстановке найденного \(\tilde{u}_\alpha\) в исходное уравнение, была сравнима с погрешностью правой части:

\[
 r \approx \delta, \quad r = \left(\int_{c}^{d} \{ A \left[x, \tilde{u}_\alpha (\xi) \right] - \tilde{f} (x) \}^2 \, dx \right)^{1/2}.
\]

(49)

Очевидно, воспроизводить правую часть с точностью много выше \(\delta\) бессмысленно; поэтому, если в расчете получено \(r \ll \delta\), то следует увеличить \(\alpha\). Наоборот, погрешность много больше \(\delta\) недопустима, так что если \(r \gg \delta\), то надо уменьшить \(\alpha\).

Визуальный контроль заключается в том, что выбирают наименьшее значение \(\alpha\), при котором еще не наблюдается заметной «разболтанности» регуляризованного решения \(\tilde{u}_\alpha\).

Выбор \(n\). При чрезмерно большом \(n\) регуляризованное решение сильно сглаживается. Значение \(n = 0\) обеспечивает лишь среднеквадратичную сходимость \(\tilde{u}_\alpha (\xi)\) к \(\tilde{u} (\xi)\). Поэтому наиболее часто используют \(n = 1\).

Помимо вариационного способа регуляризации существует ряд других: метод подбора, метод квазиобращения, методы с использованием преобразований Лапласа и Меллина и т. д. Они рассмотрены в [39] и цитированных там работах.
3. Уравнение Эйлера. Учитывая явный вид (40) оператора A, перепишем задачу (42) следующим образом:

$$\alpha \sum_{k=0}^{n} \int_{a}^{b} p_k (\xi) [u^{(k)} (\xi)]^2 d\xi + \int_{c}^{d} \int_{a}^{b} K (x, \xi) u (\xi) d\xi - f (x) = \min. \quad (50)$$

Составим для этой вариационной задачи уравнение Эйлера. Для этого приравняем нулю вариацию левой части по $u (\xi)$:

$$\alpha \sum_{k=0}^{n} \int_{a}^{b} p_k (\xi) u^{(k)} (\xi) \delta u^{(k)} (\xi) d\xi +$$

$$+ \int_{c}^{d} \int_{a}^{b} K (x, \eta) u (\eta) d\eta - f (x) \int_{a}^{b} K (x, \xi) \delta u (\xi) d\xi = 0. \quad (51)$$

Интегралы, стоящие под знаком суммы, вычислим последовательным интегрированием по частям:

$$\int_{a}^{b} p_k (\xi) u^{(k)} (\xi) \delta u^{(k)} (\xi) d\xi =$$

$$= \sum_{r=0}^{k-1} (-1)^r \delta u^{(k-1-r)} (\xi) \frac{d^r}{d\xi^r} \left[p_k (\xi) u^{(k)} (\xi) \right] \bigg|_{\xi=p}^{\xi=b} +$$

$$+ (-1)^k \int_{a}^{b} \delta u (\xi) \frac{d^k}{d\xi^k} \left[p_k (\xi) u^{(k)} (\xi) \right] d\xi. \quad (52)$$

Подставляя (52) в (51) и меняя порядок суммирования в двойной сумме по краевым вариациям, найдем

$$\alpha \sum_{r=1}^{n} \delta u^{(r)} (\xi) \sum_{k=r}^{n} (-1)^{k-r} \frac{d^{k-r}}{d\xi^{k-r}} \left[p_k (\xi) u^{(k)} (\xi) \right] \bigg|_{\xi=a}^{\xi=b} +$$

$$+ \alpha \sum_{k=0}^{n} (-1)^k \int_{a}^{b} \delta u (\xi) \frac{d^k}{d\xi^k} \left[p_k (\xi) u^{(k)} (\xi) \right] d\xi +$$

$$+ \int_{c}^{d} \int_{a}^{b} K (x, \eta) u (\eta) d\eta \int_{a}^{b} K (x, \xi) \delta u (\xi) d\xi =$$

$$= \int_{c}^{d} f (x) dx \int_{a}^{b} K (x, \xi) \delta u (\xi) d\xi.$$

Полагая в этом выражении δ-функцию в качестве вариации $\delta u (\xi)$, получим исходное уравнение Эйлера; оно будет интегро-дифференциальным:

$$\alpha \sum_{k=0}^{n} (-1)^k \frac{d^k}{d\xi^k} \left[p_k (\xi) u^{(k)} (\xi) \right] + \int_{a}^{b} Q (\xi, \eta) u (\eta) d\eta = \Phi (\xi), \quad a \leqslant \xi \leqslant b,$$

(53а)
с ядром и правой частью

\[Q(\xi, \eta) = \int_{c}^{d} K(x, \xi) K(x, \eta) \, dx, \quad \Phi(\xi) = \int_{c}^{d} K(x, \xi) f(x) \, dx \quad (53b) \]

и краевыми условиями

\[q_r[u(a)] = q_r[u(b)] = 0, \quad 1 \leq r \leq n; \quad q_r[u] = \sum_{k=r}^{n} (-1)^k \frac{d^{k-r}}{d\xi^{k-r}} (p_k u^{(k)}). \quad (53v) \]

Заметим, что ядро \(Q(\xi, \eta) \) определено на квадрате \([a, b; a, b]\), симметрично и непрерывно, а правая часть \(\Phi(\xi) \) непрерывна.

Формулировка задачи (42) в виде уравнения Эйлера (53) позволяет доказать, не пользуясь аппаратом функционального анализа, что построенный алгоритм является регуляризирующим; при этом для простоты будем полагать \(p_k(\xi) = 1 \).

Теорема 1. Задача (53) корректно поставлена при любом \(\alpha > 0 \).

Доказательство. Сначала рассмотрим простейший случай \(n = 0 \). При этом исчезает все краевые условия (53v) и произвольные в уравнении (53a), и задача (53) превращается в интегральное уравнение Фредгольма второго рода:

\[\alpha u(\xi) + \int_{a}^{b} Q(\xi, \eta) u(\eta) \, d\eta = \Phi(\xi) \quad (54) \]

c с ядром и правой частью (53b).

Пусть \(\lambda_i, u_i(\xi) \) — собственные значения и собственные функции ядра \(Q(\xi, \eta) \). Поскольку ядро имеет вид (53b), то они удовлетворяют уравнению

\[u_i(\xi) = \lambda_i \int_{a}^{b} u_i(\eta) \, d\eta \int_{c}^{d} K(x, \xi) K(x, \eta) \, dx. \]

Умножая обе части уравнения на \(u_i(\xi) \) и интегрируя, получим

\[0 < \int_{a}^{b} u_i^2(\xi) \, d\xi = \lambda_i \int_{c}^{d} dx \left\{ \int_{a}^{b} K(x, \xi) u_i(\xi) \, d\xi \right\}^2. \]

Отсюда видно, что все собственные значения ядра \(Q(\xi, \eta) \) положительны.

Поэтому, согласно теории интегральных уравнений Фредгольма (см. § 1, п. 1), при любом \(\alpha > 0 \) уравнение (54) имеет решение \(u_a(\xi) \), причем это решение единственно и непрерывно зависит от правой части \(\Phi(\xi) \) и, тем самым, от \(f(x) \). Таким образом, при \(n = 0 \) задача (53) и эквивалентная ей задача (42) корректны.
При \(n > 0 \) задачу (53) также можно свести к интегральному уравнению. Построим функцию Грина \(G(\xi, \tau) \) для дифференциального оператора, стоящего в левой части (53а), при краевых условиях (53в). Рассматривая все интегральные члены в (53а) как правую часть дифференциального уравнения, выразим через них решение при помощи функции Грина:

\[
au(\xi) + \int_a^b u(\eta) \, d\eta \int_a^b G(\xi, \tau) Q(\tau, \eta) \, d\tau = \int_a^b G(\xi, \tau) \Phi(\tau) \, d\tau.
\] (55)

Таким образом, \(u(\xi) \) удовлетворяет уравнению Фредгольма второго рода, причем его ядро имеет только положительные собственные значения. Следовательно, задача (53) корректна при любом \(n \), если \(\alpha > 0 \), что и требовалось доказать.

Замечание 1. Интегро-дифференциальное, уравнение (53а) содержит производные решения вплоть до порядка \(2n \). Поэтому \(u_a(\xi) \) имеет \(2n \) непрерывных производных.

Теорема 2. Пусть \(A[x, u] = f \); тогда при \(n = 1 \) и положительном \(\alpha \to 0 \) решение \(u_a(\xi) \) задачи (53), соответствующее правой части \(f(x) \), равномерно сходится к \(u(\xi) \).

Доказательство. При \(n = 1 \) решения \(u_a(\xi) \) задачи (53) с любой правой частью являются дважды непрерывно дифференцируемыми. Применяя неравенство Коши—Буняковского, найдем

\[
\left(\int_\xi^{\xi + \delta} |u_\alpha'(\tau)| \, d\tau \right)^2 \leq \int_\xi^{\xi + \delta} d\tau \cdot \int_\xi^{\xi + \delta} |u_\alpha'(\tau)|^2 \, d\tau \leq \\
\leq \delta \int_a^b [u_\alpha'(\tau)]^2 \, d\tau \leq \delta \Omega_1 [u_a]. \] (56)

Рассмотрим множество решений \(u_a(\xi) \), соответствующих одной и той же правой части \(f(x) \), но разным значениям параметра \(\alpha > 0 \). Полагая \(\bar{f} = f \) в неравенстве (44), получим

\[
\Omega_1 [\bar{u}_a] \leq \Omega_1, \quad \Omega_1 = \Omega_1 [\bar{u}].
\] (57)

Из неравенств (56) и (57) следует

\[
|\bar{u}_a(\xi + \delta) - \bar{u}_a(\xi)| \leq \int_\xi^{\xi + \delta} |u_\alpha'(\tau)| \, d\tau \leq V \delta \Omega_1,
\] (58)

что означает равностепенную непрерывность множества функций \(\bar{u}_a(\xi) \). Кроме того, согласно определению функционала \(\Omega_1 \) при \(p_k(\xi) = 1 \),

\[
(b - a) \min |\bar{u}_a(\xi)|^2 \leq \Omega_1 [\bar{u}_a] \leq \Omega_1.
\] (59)
Из (59), (57) и (42б) вытекает, что

$$\max |\bar{u}_a(\xi)| \leq \min |\bar{u}_a(\xi)| + \int_a^b |\bar{u}_a'(\xi)| \, d\xi \leq \left(V_{b-a} + \frac{1}{V_{b-a}} \right) V_{\Omega_1},$$

(60)

t. е. функции $\bar{u}_a(\xi)$ равномерно ограничены.

Теперь предположим, что функции $\bar{u}_a(\xi)$ не сходятся равномерно к $\tilde{u}(\xi)$ при $\alpha \to 0$, т. е. для некоторого $\varepsilon > 0$ найдется такая последовательность $\alpha_k \to 0$, что $\|\bar{u}_{a_k}(\xi) - \tilde{u}(\xi)\|_C \geq \varepsilon$.

Построим на отрезке $a \leq \xi \leq b$ последовательность сгущающихся вдвоем сеток. Узлы этих сеток образуют счетное множество точек. Перенумеруем эти узлы, как указано на рис. 103. Тогда для отрезка этого множества, состоящего из первых N узлов, длина интервала между соседними узлами не превышает

$$\delta = 2(b-a)/N.$$

Из последовательности ограниченных в совокупности функций $\bar{u}_{a_k}(\xi)$ можно выбрать подпоследовательность, сходящуюся в узле ξ_1. Из этой подпоследовательности выберем подпоследовательность, сходящуюся в узле ξ_2, и т. д. В итоге построим подпоследовательность $\tilde{u}_{a_k}(\xi)$, сходящуюся в каждом узле ξ_i к некоторому пределу $\tilde{u}(\xi_i)$.

Выберем сколь угодно малое $\varepsilon > 0$ и положим $N = 18(b-a) \times \times V_{\Omega_1} \varepsilon^{-2}$. Возьмем настолько малое $\alpha_0(\varepsilon)$, чтобы при $\alpha < \alpha_0(\varepsilon)$ во всех узлах ξ_i с номерами $i \leq N$ выполнялось неравенство $|\tilde{u}_{a_0}(\xi_i) - \tilde{u}(\xi_i)| \leq \varepsilon/3$. Интервал между соседними узлами настолько мал, что в силу (58) значения $\tilde{u}_{a_0}(\xi_i)$ в соседних узлах будут различаться меньше, чем на $\varepsilon/3$. Тогда значения $\tilde{u}(\xi_i)$ в соседних узлах с номерами $i \leq N$ будут различаться меньше чем на ε.

Отсюда, во-первых, следует, что функцию $\tilde{u}(\xi)$ можно доопределить во всех точках отрезка $a \leq \xi \leq b$ так, что она будет непрерывной. Во-вторых, подпоследовательность $\tilde{u}_{a_k}(\xi)$ равномерно сходится к доопределенной функции $\tilde{u}(\xi)$.

Функции $\tilde{u}_{a_k}(\xi)$ являются решением задачи (42) с правой частью $f(x)$. Подставляя их в эту задачу и переходя к пределу при $\alpha_k \to 0$, мы убеждаемся, что $\tilde{u}(\xi)$ является решением этой задачи при $\alpha = 0$, т. е. решением задачи (41). Поскольку реше-
ние последней задачи единственно, то \(\hat{u}(\xi) = \hat{u}(\xi) \), что противоречит сделанному в ходе доказательства предположению. Это противоречие доказывает теорему.

Теорема 3. Алгоритм (42) при \(n = 1 \) обеспечивает сильную регуляризацию.

Доказательство. Пусть точной правой части \(\hat{f}(x) \) соответствуют точное решение \(\hat{u}(\xi) \) и регуляризованное решение \(\hat{u}_\alpha(\xi) \), а приближенной правой части \(\hat{f}(x) \) соответствует регуляризованное решение \(\hat{u}_\alpha(\xi) \).

Зададим сколь угодно малое \(\varepsilon > 0 \). По теореме 2 найдется такое \(\alpha_0(\varepsilon) \), что \(\| \hat{u}_\alpha - \hat{u} \|_C \leq \varepsilon/2 \) при \(\alpha \leq \alpha_0(\varepsilon) \).

Согласно теореме 1 задача (42) корректна, так что при любом заданном \(\alpha > 0 \) найдется такое \(\delta(\alpha) \), что если \(||\hat{f} - \hat{f}|| \leq \delta(\alpha) \), то \(||\hat{u}_\alpha - \hat{u}_\alpha||_C \leq \varepsilon/2 \).

Следовательно, если \(\alpha \leq \alpha_0(\varepsilon) \) и \(||\hat{f} - \hat{f}|| \leq \delta(\alpha) \), то

\[
||\hat{u}_\alpha - \hat{u}||_C \leq ||\hat{u}_\alpha - \hat{u}_\alpha||_C + ||\hat{u}_\alpha - \hat{u}||_C \leq \varepsilon.
\]

Это соответствует определению сильной регуляризации (см. п. 1); теорема доказана.

Замечание 2. Поясним действие регуляризации простыми рассуждениями. Пусть правая часть \(\Phi(\xi) \) получила возмущение \(\beta e^{i\omega_0 \xi} \); тогда решение получит возмущение \(\gamma e^{i\omega_0 \xi} \). Прибавляя эти возмущения в (53a) и оценивая каждое слагаемое по порядку величины, получим

\[
\gamma \left(\alpha \sum_{k=0}^{n} \omega^{2k} + \frac{1}{\omega} \right) \sim \beta.
\]

Рассмотрим поведение возмущений при больших частотах. Если \(\alpha = 0 \), то \(\gamma \sim \omega \beta \), т. е. возмущения решения велики, и расчет неустойчив. Регуляризации нет.

Если \(\alpha \neq 0 \), но \(n = 0 \), то \(\gamma \sim \beta/\alpha \), т. е. возмущения решения по порядку величины равны возмущениям правой части, и расчет становится устойчивым. Чем больше \(\alpha \), тем меньше возмущения решения и "разболтка" в численном расчете. Но сдвиги фаз отдельных гармоник приводят к тому, что сходимость будет только среднеквадратичной (слабая регуляризация).

Если \(n = 1 \), то \(\gamma \sim \beta/\alpha \omega^2 \) и возмущения решения для высоких частот малы. Значит, расчет хорошо устойчив и \(\hat{u}_\alpha(\xi) \) равно мерно сходится к \(\hat{u}(\xi) \) (сильная регуляризация). При \(n > 1 \) амплитуды \(\gamma \omega \) настолько быстро убывают при \(\omega \to \infty \), что обеспечивается равномерная сходимость не только регуляризованного решения, но и его \((n-1) \)-й производной.

4. Некоторые приложения. Некорректные задачи встречаются в практике вычислений довольно часто. К ним относятся, напри-
мер, сглаживание и дифференцирование экспериментально измеренных функций, суммирование рядов Фурье с неточно заданными коэффициентами, решение плохо обусловленных линейных систем, задачи оптимального управления, аналитическое продолжение функций, линейное программирование (оптимальное планирование), обратные задачи теплопроводности и геологической разведки, восстановление переданного сигнала по принятому при наличии искажений аппаратуры и многие другие.

Некоторые из этих задач встречались в предыдущих главах. Покажем, как они регулируются вариационным методом. Для определенности ограничимся сильной регуляризацией, полагая $n = 1$ в формулах (42) или (53).

Сглаживание функции. Пусть функция $f(x), a \leq x \leq b$, измерена экспериментально и содержит заметную случайную погрешность. Тогда математическая задача имеет вид $u(x) = f(x)$; ее можно записать в каноническом виде $A[x, u(\xi)] = f(x)$, полагая $A[x, u(\xi)] = u(x)$. Подставляя последнее выражение в измненную задачу (42), составим уравнение Эйлера (53):

$$
\alpha \left[\frac{d}{dx} \left(p_1 \frac{du}{dx} \right) - p_0 u(x) \right] - u(x) + f(x) = 0, \quad u'(a) = u'(b) = 0. \tag{61}
$$

Таким образом, сглаженная функция $u(x)$ удовлетворяет линейному обыкновенному дифференциальному уравнению второго порядка, для которого поставлена вторая краевая задача. Методы численного решения этой задачи подробно разобраны в главе VIII.

Замечание 1. Весовые функции $p_0(x)$ и $p_1(x)$ выбирают, исходя из дополнительных сведений о виде функции $f(x)$ и величине погрешности $\delta f(x)$. Например, $p_k(x)$ целесообразно брать большими в тех диапазонах значений x, где погрешность $\delta f(x)$ особенно велика. Если подобных сведений нет, то обычно полагают $p_0(x) = p_1(x) = 1$.

Замечание 2. На концах отрезка $[a, b]$ погрешность сглаживания может быть значительна, поскольку краевые условия второго рода в (61) не соответствуют, вообще говоря, истинному поведению функции.

Замечание 3. Можно уменьшить погрешность сглаживания вблизи концов отрезка $[a, b]$, если воспользоваться регуляризацией более высокого порядка (см. задачу 10). Однако, как отмечалось в п. 2, при этом могут исказаться качественные особенности решения (типа, например, узких экстремумов).

Дифференцирование. Задачу дифференцирования $u(x) = f'(x), a \leq x \leq b$, можно записать в виде уравнения Вольterra первого рода (36):

$$
\int_{a}^{x} u(\xi) d\xi = f(x) - f(a),
$$
или, формально, в виде уравнения Фредгольма первого рода с разрывным ядром:

\[\int_{a}^{b} K(x, \xi) u(\xi) \, d\xi = f(x) - f(a), \quad a \leq x \leq b; \]
\[K(x, \xi) = 1 \text{ при } a \leq \xi \leq x \leq b, \]
\[K(x, \xi) = 0 \text{ при } \xi > x. \]

Поскольку требование непрерывности ядра не является существенным, применим к этой задаче алгоритм (53). Легко получим

\[Q(\xi, \eta) = \int_{a}^{b} K(x, \eta) K(x, \xi) \, dx = b - \max(\xi, \eta), \]
\[\Phi(\xi) = \left[f(x) - f(a) \right] K(x, \xi) \, dx = \int_{a}^{b} \left[f(x) - f(a) \right] \, dx. \]

Отсюда вытекает, что регуляризованное решение удовлетворяет следующему интегро-дифференциальному уравнению и краевым условиям:

\[-\alpha \left[\frac{d}{d\xi} \left(p_1(\xi) \frac{du}{d\xi} \right) - p_0(\xi) u(\xi) \right] + \]
\[+ \int_{a}^{b} (b - \xi) u(\eta) \, d\eta + \int_{a}^{b} (b - \eta) u(\eta) \, d\eta = \int_{a}^{b} \left[f(x) - f(a) \right] \, dx, \]
\[u'(a) = 0, \quad u'(b) = 0. \]

К этой задаче также относятся сделанные выше замечания о выборе весовых функций, о значительной погрешности на концах отрезка \([a, b]\) и возможностях ее уменьшения.

С у м м и р о в а н и е р я д а Ф у рье. Пусть задана полная ортонормированная система функций \(\varphi_s(x) \), которую можно рассматривать как систему собственных функций некоторой задачи Штурма—Лиувилля:

\[\frac{d}{dx} \left[p_1(x) \frac{d\varphi}{dx} \right] - \left[p_0(x) + \lambda \right] \varphi(x) = 0, \]
\[\varphi'(a) = 0, \quad \varphi'(b) = 0. \]

Требуется просуммировать ряд Фурье

\[f(x) = \sum_{s=1}^{\infty} \beta_s \varphi_s(x), \]

коэффициенты которого \(\beta_s \) заданы приближенно.

Эту задачу можно рассматривать как сглаживание неточно заданной функции \(f(x) \). Воспользуемся для ее решения уравнением (61), где в качестве \(p_0(x) \) и \(p_1(x) \) выбраны веса, входящие
в задачу Штурма — Лиувилля (64). Будем искать регуляризованное решение также в виде ряда Фурье:

\[u(x) = \sum_{s=1}^{\infty} \gamma_s \varphi_s(x). \]

(66)

Подставляя (66) и (65) в (61) и учитывая (64), получим

\[\gamma_s = \frac{\beta_s}{1 + \alpha \lambda_s}, \]

(67)

где \(\lambda_s > 0 \) — собственные значения задачи Штурма — Лиувилля (64). Этот способ регуляризации приводился без доказательства в гл. II, § 2, п. 3.

Плохо обусловленные линейные системы \(Au = f \), где \(u \) и \(f \) — конечномерные векторы, можно регуляризировать, записывая их непосредственно в вариационной форме (42) и выбирая \(n = 0 \):

\[\| Au - f \|^2 + \alpha \| u \|^2 = \min, \quad \| a \|^2 = (a, a). \]

(68)

Формально \(n = 0 \) соответствует слабой регуляризации. Но в конечномерном пространстве все нормы эквивалентны, поэтому сходимость регуляризованного решения к точному при \(\alpha \to 0 \) является равномерной.

Уравнение (68) означает, что среди решений, приближенно удовлетворяющих исходной задаче, ищут вектор с минимальной длиной. Часто рассматривают более общую постановку:

\[\| Au - f \|^2 + \alpha \| u - u_0 \|^2 = \min, \]

(69)

которая определяет нормальное решение — приближенное решение, наименьше отличающееся от заданного вектора \(u_0 \). Ее используют, например, в задачах линейного программирования (см. гл. VII, § 3).

Поскольку (69) является квадратичной формой относительно \(u \), то нахождение ее минимума сводится к решению линейной алгебраической системы

\[(A^H A + \alpha E) u = A^H f + \alpha u_0. \]

(70)

Благодаря слагаемому \(\alpha E \) эта система хорошо обусловлена, по крайней мере, при не слишком малых \(\alpha > 0 \). Поэтому ее нетрудно решить методом исключения Гаусса.

Описанный алгоритм применяют также для решения систем с выраженной матрицей \(A \).

5. Разностные схемы. При вариационном методе регуляризации численно решать приходится либо задачу на минимум функционала (42), либо краевую задачу для интегро-дифференциального уравнения Эйлера (53). К этим задачам целесообразно применять разностные методы.
Дадим пример построения разностной схемы, исходя из вариационной формулорики (42). Введем на прямоугольнике \([c \leq x \leq d, a \leq \xi \leq b] \) сетку \(\{x_n, \xi_m, 0 \leq n \leq N, 0 \leq m \leq M\} \) так, что \(x_0 = c, x_N = d, \xi_0 = a, \xi_M = b. \) Для простоты ограничиваем случай равномерных сеток \(x_n = c + nh, \xi_m = a + mh, \) сильной регуляризации и единичных весовых функций \(p_0 (\xi) = p_1 (\xi) = 1. \)

Задача (42) при указанных ограничениях принимает вид

\[
\int_c^d [\delta (x)]^2 \, dx + \alpha \int_a^b \left[u^2 (\xi) + \left(\frac{du}{d\xi} \right)^2 \right] d\xi = \min, \tag{71a}
\]

\[
\delta (x) = \int_a^b K (x, \xi) u (\xi) \, d\xi - f (x), \tag{71b}
\]

где величина, обозначенная через \(\delta (x), \) имеет смысл невязки исходной нерегуляризованной системы при подстановке в нее регуляризованного решения. Аппроксимируем входящие в (71) интегралы квадратурными формулами, использующими значения функций в узлах сетки. Для этого \(\int_a^b (u')^2 \, d\xi \) вычислим по формуле средних (4.17), одновременно заменяя производную разностью:

\[
\int_{\xi_m}^{\xi_{m+1}} \frac{(du)}{d\xi}^2 \, d\xi \approx h_\xi \left(\frac{(du)}{d\xi} \right)_{m+1/2}^2 \approx h_\xi \left(\frac{u_{m+1} - u_m}{h_\xi} \right)^2. \tag{72}
\]

Остальные интегралы вычислим по формуле трапеций (4.8):

\[
\int_a^b u^2 (\xi) \, d\xi \approx h_\xi \sum_{m=0}^{M} c_m u_m^2, \quad u_m = u (\xi_m); \tag{73}
\]

\[
\int_a^b K (x_n, \xi) u (\xi) \, d\xi \approx h_\xi \sum_{m=0}^{M} c_m K_{nm} u_m, \quad K_{nm} = K (x_n, \xi_m); \tag{74}
\]

\[
\int_c^d [\delta (x)]^2 \, dx \approx h_x \sum_{n=0}^{N} b_n [\delta (x_n)]^2, \tag{75}
\]

где

\[
c_m = 1 \text{ при } 1 \leq m \leq M - 1, \quad c_0 = c_M = 1/2;
\]

\[
b_n = 1 \text{ при } 1 \leq n \leq N - 1, \quad b_0 = b_N = 1/2. \tag{76}
\]

Подставляя (72) — (76) в (71) и обозначая разностное решение через \(y_m, \) получим вместо (71) алгебраическую задачу

\[
h_x \sum_{n=0}^{N} b_n \left(h_\xi \sum_{m=0}^{M} c_m K_{nm} y_m^2 - f_n \right)^2 + \]

\[
+ \alpha h_\xi \sum_{m=0}^{M} c_m y_m^2 + \frac{\alpha}{h_\xi} \sum_{m=0}^{M-1} (y_{m+1} - y_m)^2 = \min \tag{77}
\]

на минимизацию квадратичной формы.
Для решения этой задачи приравняем нуль производные от левой части (77) по y_m. Получим систему уравнений, линейных относительно y_m:

$$\alpha y_m - \frac{\alpha}{c_m} \Lambda (y_m) + c_m \sum_{l=0}^{M} c_l Q_{ml} y_l = \Phi_m, \quad 0 \leq m \leq M; \quad (78a)$$

$$\Lambda (y_m) = \frac{1}{h_x^2} (y_{m-1} - 2y_m + y_{m+1}) \text{ при } 1 \leq m \leq M - 1,$$

$$\Lambda (y_0) = \frac{1}{h_x^2} (y_1 - y_0), \quad \Lambda (y_M) = \frac{1}{h_x^2} (y_{M-1} - y_M); \quad (78b)$$

где

$$Q_{ml} = h_x \sum_{n=0}^{N} b_n K_{nm} K_{nl}, \quad \Phi_m = h_x \sum_{n=0}^{N} b_n K_{nm} f_n. \quad (78b)$$

Матрица системы (78) является, вообще говоря, плотно заполненной; поэтому обычно эту систему решают методом исключения Гаусса.

На исследовании полученной разностной схемы не будем останавливаться, поскольку сходные вопросы были рассмотрены в главе VII, § 4. Отметим только, что схема (77) или (78) имеет аппроксимацию $O (h_x^4 + h_x^2)$, если ядро и правая часть непрерывны со своими вторыми производными.

З а м е ч а н и е 1. Если умножить уравнение (78а) на c_m, то матрица этой линейной системы станет симметричной. Тогда для решения этой системы можно будет применить метод квадратного корня (который вдвое быстрее метода Гаусса).

З а м е ч а н и е 2. Нетрудно видеть, что Q_{ml} и Φ_m являются разностными аналогами ядра и правой части (53б) интегрально-дифференциального уравнения Эйлера. Выражение $\Lambda (y_m)$, возникшее при дифференцировании последней суммы в (77), есть разностный аналог дифференциального оператора в уравнении (53а). Поэтому система (78) аппроксимирует также задачу регуляризации в форме уравнения Эйлера (53), причем выражения $\Lambda (y_0)$ и $\Lambda (y_M)$ учитывают краевые условия (53в).

ЗАДАЧИ

1. Показать, что интегральное уравнение

$$(\beta - \alpha) x + (b \alpha - a \beta) - (b - a) u (x) =$$

$$= (x-a) \int_{x}^{b} (b-\xi) f (\xi, u (\xi)) d\xi + (b-x) \int_{a}^{x} (\xi-a) f (\xi, u (\xi)) d\xi \quad (79)$$

эквивалентно краевой задаче для дифференциального уравнения

$$u'' (x) = f (x, u), \quad u (a) = \alpha, \quad u (b) = \beta.$$
2. Записать уравнение (79) в каноническом виде (1); найти выражение для ядра \(K(x, \xi, u) \).

3. Для уравнения Вольтерра (7) составить разностную схему и полный алгоритм вычисления разностного решения, используя формулу трапеций с равномерным шагом.

4. Для двумерного уравнения Фредгольма (6) составить разностную схему, используя в качестве кубатурной формулы произведение одномерных формул Гаусса.

5. В метоиде последовательных приближений для уравнения (6) выразить \(u_n(x) \) через \(u_1(x) \) при помощи рекуррентного соотношения (16).

6. Доказать, что из соотношения (20) следует оценка (21).

7. Учитывая, что уравнение (23) имеет вырожденное ядро, а) найти его точное решение; б) сделать то же для \(f(x) = \sin x \).

8. В уравнении (23) так подобрать правую часть \(f(x) \), чтобы при \(\lambda = 2 \) существовало решение.

9. Доказать утверждение, сформулированное в § 1, п. 5, замечании 1.

10. Для задачи сглаживания функции \(u(x) = f(x) \) написать уравнение и краевые условия вариационной регуляризации с \(n = 2 \). Обсудить влияние \(n \) на погрешность сглаживания вблизи границ, для простоты полагая \(p_n(x) = 1 \) и \(p_k(x) = 0 \) при \(k < n \).

11. Регуляризировать задачу \(p \)-кратного дифференцирования \(u(x) = f^{(p)}(x) \), используя запись этой задачи в виде интегрального уравнения

\[
\frac{1}{(p-1)!} \int_a^x (x-\xi)^{p-1} u(\xi) \, d\xi = f(x).
\]

12. Аппроксимировать разностной схемой краевую задачу для уравнения Эйлера (53); сравнить ее с разностной схемой (78).

13. Составить разностную схему для регуляризации однократного дифференцирования, если \(f(x) \) задана а) на равномерной сетке, б) на неравномерной сетке.